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Abstract. Quantum walks, both discrete (coined) and continuous time, form the
basis of several recent quantum algorithms. Here we use numerical simulations
to study the properties of discrete, coined quantum walks. We investigate the
variation in the entanglement between the coin and the position of the particle
by calculating the entropy of the reduced density matrix of the coin. We consider
both dynamical evolution and asymptotic limits for coins of dimensions from
two to eight on regular graphs. For low coin dimensions, quantum walks which
spread faster (as measured by the mean square deviation of their distribution
from uniform) also exhibit faster convergence towards the asymptotic value of
the entanglement between the coin and particle’s position. For high-dimensional
coins, the DFT coin operator is more efficient at spreading than the Grover coin.
We study the entanglement of the coin on regular finite graphs such as cycles, and
also show that on complete bipartite graphs, a quantum walk with a Grover coin
is always periodic with period four. We generalize the ‘glued trees’ graph used
by Childs et al (2003 Proc. STOC, pp 59-68) to higher branching rate (fan out)
and verify that the scaling with branching rate and with tree depth is polynomial.
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1. Introduction

One of the most important tasks on the theoretical side of quantum computing is the creation and
understanding of quantum algorithms. The recent presentation of several quantum algorithms
based on quantum versions of random walks is particularly important in this respect, since
they provide a new type of algorithm which can show an exponential speed up over classical
algorithms, to add to those based on the quantum Fourier transform. Childs et al [ 1] have produced
a scheme for a continuous time quantum walk that can find its way across a particular ‘glued
trees’ graph exponentially faster than any classical algorithm, while Shenvi et al [2] proved
that a discrete quantum walk can reproduce the quadratically faster search times found with
Grover’s algorithm for finding a marked item in an unsorted database. Generalizations to finding
subsets of items have also been developed [3]-[5], providing polynomial speed up over classical
algorithms. For an overview of the development of quantum walks for quantum computing, see
the recent reviews by Kempe [6] and Ambainis [7]. These results are extremely promising, but
still a long way from the diversity of problems for which classical random walks provide the
best-known solutions, such as approximating the permanent of a matrix [8], finding satisfying
assignments to Boolean expressions (kSAT with k > 2) [9], estimating the volume of a convex
body [10], and graph connectivity [11]. Classical random walks underpin many standard methods
in computational physics, such as Monte Carlo simulations, further motivating the study of
quantum walk algorithms.
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Like classical random walks, quantum walks come in both discrete time [12]-[15] and
continuous time [16] versions. The discrete and continuous time versions of classical random
walks can be related in a straightforward manner by taking the limit of the discrete walk as
the size of the time step goes to zero. In the quantum case, the discrete and continuous time
walks have different sized Hilbert spaces so there is no simple limit that relates the two basic
formulations. There is also an example of a problem where the algorithmic powers of discrete
and continuous time walks differ. Spatial search, where there is a cost associated with moving
from one data element to another, can be accomplished faster with a discrete time quantum walk,
but a continuous time quantum walk only performs as well for spatial dimensions greater than
four [17]. A continuous time walk with extra degrees of freedom has also been formulated by
Childs and Goldstone [18] that does correspond to the limit of the discrete time walk and can
perform equally well on spatial search.

Our work in this paper investigates the properties of coins in discrete quantum walks.
We follow on from prior work on quantum coins by Mackay et al [19] and Tregenna et al
[20], broadening the types of graphs studied. The question of what is particularly quantum in a
quantum walk is an interesting one which has attracted much attention [21]-[23]. In this paper,
we address this issue by investigating the evolution of the quantum mechanical entanglement as
the quantum walk progresses. We quantify the entanglement between the coin and position for
example in a coined walk by using the von Neumann entropy and show how the entanglement
oscillates and approaches asymptotic values depending on the choice of initial state and coin
bias.

The paper is organized as follows: walks on infinite lattices are discussed first, starting
with the simple walk on a line in section 2, and progressing to walks on lattices in two spatial
dimensions in section 3. Section 4 considers walks on finite graphs, including the N-cycle, cycles
with diagonals and complete bipartite graphs. We then consider quantum walks on the ‘glued
trees’ graph of [1], and generalize it to higher branching rates in section 5. Finally, we summarize
and conclude in section 6.

2. Walk on an infinite line

In a classical random walk on a line, a particle moves either left or right according to the state
of a classical coin where heads means right and tails means left (or vice versa). For the quantum
version of a random walk, the coin is a qubit that can be in a superposition of heads and tails, so
the particle moves left and right into a superposition of positions. This evolution of the walk is
governed by a coin operator that acts on the quantum coin at each step of the walk,

C(gen) _ \/ﬁ A% I - peie
2 T\ ST=pe® — Jpei® )’

where 0 < 6, ¢ < 7 are arbitrary angles, 0 < p < 1, and we have removed an irrelevant global
phase so as to leave the leading diagonal element real. Equation (1) represents the most general
expression [24] for a unitary coin operator with two degrees of freedom. In this expression, the
factors p, and 6, ¢ determine the bias and the phase angles of the coin respectively. If we set
p = 0.5and 0 = ¢ = 0, the following expression, called the Hadamard coin operator is obtained:

may 1 (1 1
o)
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Figure 1. Probability distribution for a quantum walk on the line after 5000
steps, using a Hadamard coin (equation (2)), and a symmetric initial state
(IR, 0) +i|L, 0))/+/2. Only even positions are shown since odd positions are
unoccupied.

This is an unbiased coin operator, as it chooses the directions left and right on a line with the
same probability. We label the basis states of the coin as |L) and |R), which can correspond to
spin-up and spin-down states respectively. We denote the position on the line by |x), so the joint
state of a particle at position x with a coin in state |L) can be written |L, x). For the quantum
walk on a line, the phases in the general coin operator (6 and ¢) appear in the evolution of the
walk only in the combination (6 + ¢); so as shown by Bach et al [24], their effect is equivalent
to varying the phase B in the initial coin state |y)

1Y) = V/nlL) + /1 —ne|R), 3)

where 7 is the bias in the initial state and g the relative phase between the two components. This
leaves only the bias p in the coin operator affecting the outcome of the quantum walk on a line,
and, without loss of generality, we can consider coin operators of the form

Cdis) _ ( NZEERVA S /0)
’ VT=p —Jp
After ‘flipping’ the coin with the coin operator, the particle moves to adjacent positions according

to the coin state; this is expressed mathematically as a conditional shift operator
SIL,x)=|L,x—1) and SIR,x) = |R, x +1). (5)

4)

One complete step of the quantum walk is thus given by the unitary operator U = S(C ® 1).

The position probability distribution of a quantum walk on a line is by now well known;
an example with a Hadamard coin operator, and initial state of %(| R) +1|L)) ® |0), after 5000
time steps, is shown in figure 1.

2.1. Entanglement between coin and position

Since the quantum walk dynamics are unitary, the system remains in a pure state and we can use
the entropy of the reduced density matrix of the coin to quantify the entanglement between the
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Figure 2. Left: entanglement E.(f) for a walk on a line with a biased coin,
equation (4) with p = 0.2, and two different initial states, asymmetric |R, 0)
(blue) and symmetric (|R, 0) +1i|L, 0))/ V2 (green). Right: entanglement E.(f)
for a walk on a line with coin operator bias p = 0.5 (a Hadamard coin) and the
same two initial states.

coin and the particle’s position,
E.(t) == h;log, (%)), (6)
J

where {;} are the eigenvalues of the reduced density matrix of the coin at time 7 (in the case of
the walk on a line, there are just two eigenvalues). Figure 2 shows how E(f) varies for different
initial coin states using a coin operator equation (4), with bias p = 0.2. This shows that the
entanglement approaches a limiting value that varies between zero and one depending on the
initial state of the coin. The rate of convergence to the limiting value also depends on the initial
state of the coin, with symmetric initial states (n = 0.5) converging faster (i.e. oscillations about
the asymptotic value die away fastest).

2.2. Limiting value of the entanglement

For the unbiased (Hadamard) coin operator* (p = 0.5), whatever initial coin state |) is chosen,
the asymptotic value of the entanglement will be E.(t — 00) —> Enag =~ 0.872. However, the
rate of convergence is very different for different initial coin states, with more symmetric initial
states converging faster, see figure 2.

For biased coin operators, the picture is more complicated. We have studied the limiting value
of the entanglement for two different initial states, | L, 0) (asymmetric) and (|, 0) +i|R, 0))/+/2
(symmetric), see figure 3. In the asymmetric case, the entanglement converges to a limiting value
for all p. The limiting value of the entanglement E,(p) increases monotonically from 0 (p = 1)
to 1~ (p = 07) and is discontinuous at p = 0. For p = 0, the coin operator becomes the Pauli
spin operator o, and the entanglement is zero for all time steps, showing that the coin and particle

4 Rold4n, Knight and Sipe have also studied this case analytically (unpublished).
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Figure 3. Entanglement E_(¢) for a walk on a line: asymmetric initial coin state
|L) shown on the left and symmetric initial coin state, (|L) +1i|R))/ /2 shown on
the right, for varying coin bias p, over 20 time steps.

remain disentangled. In the symmetric case the entanglement converges to a limiting value for
all except the extreme case of p = 0, where the entanglement oscillates between the minimum
and maximum values 0 and 1, as can easily be verified analytically. The asymptotic value of the
entanglement E ., (p) increases to 1 as p increases. The other variable factor is the period of the
oscillations about the convergent value. In both cases, except for p = 0 this period increases to
infinity as p — 1. As noted for the unbiased (Hadamard) coin, the rate of convergence to the
asymptotic entanglement is faster for the symmetric initial coin state.

2.3. Rate of convergence

In order to quantify the rate of convergence of the entanglement to its limiting value, we
considered the magnitude of the entanglement at a fixed time while varying the initial state.
It is convenient to write the initial coin state as

[¥o) = cos(a)|R) + sin(w)e”|L), (7)

where 1 = cos(«). Figure 4 shows how the amplitude varies with both o and B. First consider
the case where o = /4 for n = 0.5, 1.e. a symmetric initial state. We find that the entanglement
is proportional to cos?*(8) along the dotted line in figure 4. We can also fit a formula for the
minimum,

_T B 8
o= 8cos(,B) 7 (8)

This is the white line in the blue region in figure 4 where the entanglement oscillations are
smallest, i.e. fastest convergence.

To summarize the results for the quantum walk on a line, we find the various behaviours
of the entanglement that are governed as follows. The asymptotic value E, reached by the
entanglement is a function of both the coin bias p and the initial state |1/). For a fixed number
of time steps ¢, the period of oscillation of the entanglement E.(f) around E is a function of
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Figure 4. Amplitude of oscillations of entanglement versus initial coin state
parameters « and S, for a Hadamard coin operator applied for 200 time steps.

p only. For the special case of p = 0.5, an unbiased coin, E,, = Ep,, has the same value of
0.872 ... for all choices of initial coin state |v).

3. Lattices in two spatial dimensions

3.1. Higher-dimensional coins

For lattices with more than two edges meeting at each vertex, there is a far wider range of unitary
coin operators, since the coin must now have as many degrees of freedom as there are choices of
path. Since the range of higher-dimensional coin operators is too large for systematic numerical
study, for the remainder of this paper we concentrate on two natural choices. The Grover operator
was first introduced by Moore and Russell [25] in their study of quantum walks on the hypercube.

Based on Grover’s diffusion operator, it has elements [C;G)]i’ i= % — 4, i.e.,
2/d —1 2/d .. 2/d
2/d 2/d—1 --- 2/d
CEIG) = : : : ©)
2/d 2/d cee 2/d —1
For example, the d = 3 case is
1 —1 2 2
cP9=-| 2 -1 2]. (10)
3\ 2 2 1

Except in the d = 4 case, the Grover coin is biased, since the incoming direction (corresponding
to the diagonal entry) is treated differently from the outgoing directions. However, it is symmetric
under interchange of any outgoing coin direction, and is in fact the symmetric unitary operator
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farthest from the identity. The d = 4 Grover coin is the only unbiased Grover coin since all the
entries are +1

1
1

G
=1,

1

—1

1

1 1

1 1
1 1

. E (11)
1 -1

The DFT (discrete Fourier transform) coin is unbiased for all d, but asymmetric in that

you cannot interchange the labels on the directions without changing the coin operator: each
direction acquires its own phase shift. For d = 3, it looks like

1 1 1 1
CP=—1|1 w o}, (12)
V3 1 a)g w3
where w; = €™ and w3 = e~%"/ are the complex cube roots of unity. The d-dimensional DFT

coin can be written as

1 1 1
w? R
1 2 4 e y2(d-D)
| |
i a)d.—l w2(;1—1) . w(d.—l)z

where o is the complex dth root of unity.

3.2. Cartesian lattice

For a two-dimensional (2D) Cartesian grid, there are four edges meeting at each lattice site,
so a d = 4 dimensional coin is required. The quantum walk is a generalization of the walk on
a line. We tested both Grover and DFT coins (d = 4 versions) and found a similar range of
behaviours for the entanglement between the coin and the position as for the walk on a line, only
compounded by having twice as many directions. So, for example, the period of the oscillations
about the asymptotic value is now a more complicated pattern of two frequencies.

We looked for a correlation between the rate of convergence of the entanglement and the
degree to which the quantum walk spreads out over the lattice. Most choices of initial state
for the Grover and DFT coin operators produce a high probability of finding the particle on or
near the starting point, with only one special initial state giving a high rate of spreading; compare
the two distributions in figure 5, taken from [20]. Spreading is a property of random walks that
can be useful for efficient, uniform sampling; compare [26]. The entanglement converges much
faster for the quantum walk that spreads out in the ring (see figure 6). The entanglement between
the coin and the position thus provides a way to monitor the progress and character of the walk.

3.3. Triangular lattices

Higher-dimensional lattices that lie in a plane (two spatial dimensions) can be constructed in
a number of ways. We studied two examples: a tessellation of equilateral triangles produces a
lattice with d = 6; and adding diagonals to a Cartesian grid, makes a ‘first and second nearest
neighbours’ lattice with d = 8. These are illustrated in figure 7.

New Journal of Physics 7 (2005) 156 (http://www.njp.org/)


http://www.njp.org/

0.35
0.3
0.25

0.15

Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 5. Typical (left) and ring-like (right) spreading distribution for a Grover
coin on a 2D Cartesian lattice. Axes represent positions (x and y) with the z axis
indicating the probability of finding the particle at that position. (Reproduced
from [20].)
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Figure 6. Entanglement E_(¢) for the spike (blue) and ring (green) distributions
on a 2D Cartesian lattice, using a Grover coin. A DFT coin operator produces a
very similar result.
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Figure 7. Triangular lattices with (a) d = 6 and (b) d = 8.

We tested a number of different initial states with both Grover and DFT coins, again looking
at correlations between the amount that a walk starting from the centre of the grid spreads and the
oscillations in the entanglement. To quantify the spread, we studied the mean-squared deviation
of the probability distribution from the uniform probability distribution

. 1 \?
AP (f) = 3 (W(r, NP — m) , (14)

r

where r is a lattice site in the set it is possible to reach after 7 steps and N(¢) the number of such
lattice sites (so 1/N(7) is the average probability per site). If the walk is spread out evenly over

the lattice, then ﬁz (r) will be small, whereas if it is concentrated on parts of the lattice, ﬁz 3]
will be larger.

For both the d = 6 and 8 grids, as on the rectangular grid, the Grover coin can produce two
kinds of behaviour: fast spreading distributions and distributions concentrated nearly all close
to the origin, depending on the choice of initial states. The amplitudes of the oscillations in the
entanglement decrease quickly for fast spreading but only slowly for the distributions stuck near
the starting point. This is illustrated in figures 8 and 9.

In contrast to the Grover coin operator, the DFT coin produces good spreading for almost
all chosen initial states and the entanglement converges faster for these cases. To investigate the
correlation between the entanglement and the spreading of the walk more thoroughly, we wrote
the initial coin state as

d
o) = > 1)) (15)
j=1

For d = 6, we fixed one of the phases and varied the other d — 1 over all the permutations,
allowing repetitions of ¢; = wj/d (j = 1, ..., d, total of 6° values, thus), to see the interference
effects on the spread. For the Grover coin operator (figure 10), most of these states give a large

ﬁz(t) while for the DFT most give a small ﬁz (7): the average (over these initial states) after
t = 15 steps is (ﬁz (1)) = 0.0501 for the Grover and (ﬁz(t)) = 0.0015 for the DFT walk. For
the minimum AP (1) in this set, the entanglement oscillations decay fastest, as seen in figure 9
(for d = 6) and figure 11 (for d = 8). The minimum values of ﬁz(t) occur for the initial states
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Figure 8. Probability distribution after 49 steps of a quantum walk onad =6

grid using a Grover coin operator: (left) starting with coin state JLE Zle i), at the

point (50, 50), and (right) starting with coin state JLJ Z,di 21 i) — «/LJ Z?:d/z o i)

Axes represent position in the xy-plane and probability as in figure 5.
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Figure 9. Spreading asindicated by the mean-squared deviation from the uniform

distribution ﬁz (1) (left) and entanglement E.(¢) (right) for the cases shown in
figure 8 spike (blue) and ring (green).

{9} =(0,0,0,0,0,0) for the Grover coin operator and {¢;} = (0,0,4,1,1,5) for the DFT
coin operator.

For d=8, we fixed one of the phases and varied the other d — 1 over only the
following subsets of all the arrays of ¢; = mj/d: (1) j € 0,d — 1, {¢;} = (0,0,0,0,0,0,0,0),
0,0,0,0,0,0,0,d—-1),...,d—-1,d—1,...,d—1,d—1,0); (ii) permutations of
(0,1,2,...,d — 1) (without repetitions) to see the interference effects on the spread. Although
we did not vary over the range as large as in the d = 6 case, we could observe a similar
behaviour: better spread for DFT against Grover, entropy converging quickly for better spread.

The average (over these initial states) after r = 15 stepsis <ﬁ2 (1)) = 0.0508 for the Grover

and (ﬁz (1)) = 0.0027 for the DFT walk. (For the d = 8 grid, N(f) = (2t + 1)?, since there are

New Journal of Physics 7 (2005) 156 (http://www.njp.org/)


http://www.njp.org/

Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

x107°
3

10 20 30 40 50 60 70 80

Figure 10. Grover coin on d = 8 grid, after 39 time steps, starts with coin
state f Zd/ 2 f Zl —d/2+1 11). Axes represent position in the xy-plane and

probability as in ﬁgure 5.
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Figure 11. Spreading as indicated by the mean-squared deviation from the

uniform distribution ﬁz (#) (left) and entanglement E.(¢) (right) for the DFT coin
operator on d = 8 grid, after 39 time steps, starting with coin states \/LE Zf: 17

(blue) and f Zd/z i) +1f Z —ay2+1 1) (green).
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diagonals everywhere.) The minimum values of N (z‘)ﬁ2 () occur for the initial states {¢;} =
0,0,0,0,0,0,0,0) for the Grover coin operator and {¢;} = (0,7,7,7,7,0,0, 7) for the DFT
coin operator. For the d = 8 grid, we also tested Hadamard coins (a simple 2D Hadamard coin
for each of the four pairs of opposite directions) and found that they displayed similar properties
to the DFT coin.

Thus, for all tested coin operators and coin initial states, we have verified that those walks
with good spreading also show small amplitudes of oscillation in the entanglement of the coin,
pointing to a quick convergence. In particular, the DFT and Hadamard coin operators produce
faster spreading than the Grover coin for most choices of initial state on these lattices of higher
degree. This can be explained by noticing that ford > 4, the Grover coin is biased so that it favours
returning along the edge that it arrived from. This will tend to reduce its spreading power. The
DFT coin is unbiased, so its spreading power is affected only by how the different phases cause
interference effects. For larger d, there are more different phases, so less opportunities for all of
them to cancel out. The Hadamard coin is also unbiased and it does not mix between the different
orientations of the pairs of edges, so on these triangular lattices it produces a spreading that is
equivalent to the spreading on a line.

4. Walks on finite regular graphs

We now turn to quantum walks on graphs with a fixed number of vertices, so the walk is
bounded and the notion of spreading is no longer the relevant property. Quantum walks on finite
graphs were first investigated by Aharonov et al [14], who showed that while the instantaneous
distribution of a quantum walk on these graphs does not converge (being unitary and reversible),
a suitably defined time-averaged distribution always converges, though this distribution need not
be uniform (in the classical case, the limiting distribution is always uniform). The interesting
questions are thus how fast the quantum walk converges to the limiting time-averaged distribution
and whether the distribution is uniform. We are also interested in whether the walk shows periodic
behaviour in the instantaneous distribution [20] and, if so, under what conditions.

4.1. N-cycles

The quantum walk on a line can be converted to an N-cycle by taking a line segment of length N
and applying periodic boundary conditions. Clearly, for > N/2, when the walk starts to wrap
around on itself, the evolution will be more complicated than a line. Cycles with odd or even
values of N give different results. For an even cycle, only even (odd) positions are occupied after
an even (odd) number of time steps, but for an odd cycle, after the first (N + 1) /2 steps, both even
and odd positions are occupied at the same time. We use the same coin operator as for the walk
on a line, given by equation (1). We observed that the entanglement of the coin, apart from the
particular cases identified by Tregenna et al [20] in which the walk is periodic, shows no regular
pattern, being apparently chaotic. We give two examples illustrating this in figure 12. Since the
entanglement follows the instantaneous state of the system, it does not tell anything useful about
the mixing properties of the time-averaged distribution. We also calculated the time-averaged
entanglement (shown in figure 12) and this appears to converge to a steady value at roughly the
same rate as the distribution converges to its limiting distribution. This is shown for a seven-cycle
in figure 13.
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Figure 12. Left: entropy versus time step for eight-cycle with symmetric initial
coin state. Right: entropy versus time step for 16-cycle with symmetric initial coin
state. Both instantaneous (blue) and time-averaged (green) values of the entropy
are shown.
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Figure 13. Comparison of time-averaged entropy (thick green) with convergence
to time-averaged limiting (uniform in this case) distribution (thick red) for a
seven-cycle with symmetric initial coin state and Hadamard coin operator. The
difference between the time-averaged distribution and the limiting distribution is
scaled by a factor of 0.25 to make the range of fluctuations roughly comparable
with the entropy, and shown by the instantaneous entropy and distribution
difference (thin lines).

4.2. Cycles with diagonals

Next we consider the case where there are three or more possible directions that the particle can
take. As a generalization of the cycles, we take the case (for N even) where opposite vertices of
the N-cycle are joined to give three possible directions for the particle. Figure 14 explains how
this works. The third possible path of the particle connects the original position (x = 0) to the
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Figure 14. A six-cycle where the numbers £1, and £3 label the directions which
the particle can take. This is an example of a complete bipartite graph, as redrawn
in equivalent form on the right. Each blue vertex is connected to every one of the
red vertices and vice versa; all the edges cross between the two sets of vertices
(divided by the dashed line).

opposite position (x = 3) of the cycle, and likewise for the other two opposite pairs. The edges
of the cycle need to be consistently labelled (see [7, 21]) and here we have chosen to label each
end of the edges with either —1, 1, —3 or 3, such that adding the vertex and edge label gives the
vertex label at the other end of that edge. This means that as the particle traverses the edge, the
sign of the coin state must flip, so we adjust the conditional shift operation to act as

Sle,v) = | — ¢, v+ c(mod N)), (16)

where v € {0, ..., (N — 1)} is the vertex and c the coin state, compare equation (5). Although
this means we are using more coin states than the degree of the graph (four instead of three), at
any single vertex only three of the four coin states are actually used, and we pad the coin operator
with zeros (one on the diagonal) for the unused coin state so it operates correctly (as a Grover
or DFT coin) on the 3D subspace. More details on how to do this for the general case of a graph
with vertices of various degrees can be found in [21].

The evolution of the walk is determined by the coin operator: we used the d = 3 Grover and
DFT coins, equations (10) and (12) respectively. For N = 6, the entanglement is periodic with
period four, as shown in figure 15 (left). For all other values of N that we tested, the N-cycles
plus diagonals showed no regularity, and the entanglement followed a complicated pattern, as
illustrated in figure 15 (right) for the case of N = 10.

4.3. Complete bipartite graphs

The six-cycle with opposite vertices linked is an example of a complete bipartite graph. In a
bipartite graph, the vertices can be divided into two distinct sets such that every edge connects
between the two sets. A bipartite graph is complete if, in addition, each vertex in one set is
connected to every vertex in the other set. These conditions fix the relationship between the
number of vertices and the degree of the graph: a complete bipartite graph of degree d has
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Figure 15. Left: entanglement E_(¢) for the graph of figure 14 using a DFT coin
operator and a symmetric initial coin state. Right: entanglement E.(¢) for 10-cycle
with diagonals and a DFT coin operator.

N = 2d vertices, we denote it by K,;,. These graphs can be obtained from the N-cycle by
adding edges between every pair of vertices (i, j) in which i is odd and j is even. We can label
the directions from each vertex as £1, £3, ..., £(d — 1), as shown in figure 14 for d = 3, i.e.
N = 6. Ahmadi et al [27] studied the continuous time quantum walk on similar graphs, looking
for instantaneous mixing (i.e. a uniform distribution obtained at a particular instant in the time
evolution of the quantum walk). They found only a small number of examples of instantaneous
mixing for regular complete and cyclic graphs with no more than four vertices. This is in sharp
contrast to classical random walks, which approach a uniform distribution as they evolve on all
well-behaved graphs. Periodic behaviour is also a property of the instantaneous distributions,
though a slightly less stringent requirement than instantaneous mixing.

We can show analytically that the Grover walk on K 4 is periodic with period 4, by looking
at the evolution operator U = S - (1 ® C;G)) in Fourier space. With our chosen edge labelling,
the shift operator acts as in equation (16). Taking a Fourier transform on the vertex space only,

N
v) = ﬁ ;ezﬂi’w/ﬁm, (17)
shows that the shift acts as
S|v, ¢) = L zN:ezm(wc)k/le —c) (18)
=N & :
and then
Silk, ¢) = ™M Nk, —c), (19)
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meaning that S is block-diagonal in the Fourier-transformed basis. Represent it by

0 o 0 0 0
ot 0 0 0 0
0 0 0 o 0
S%c=10 0 o* 0 o | (20)
0 0 0 0 ... oD

in which @ = e?/N and the last entry is in the diagonal for the case where d is odd,

otherwise the last block is similar to the others. In this basis, the (N-d-dimensional) evolution
operator U = § - (1 ® CE,G)) factorizes into a set of N matrices U; each of dimension d, with
U, =S, - CE,G). From this, one can check explicitly that U,? = 11, which means that the walk has a
period of 4. Alternatively, by looking at the eigenvalues of U, we can also verify the periodicity.
Uy has eigenvalues +1 and e'%, with cos 6 = =t >~ , ,_ cos (2mc/N) (method used in
[5]), which reduce to 1 when d = N/2.

Using numerical simulations with a DFT coin on complete bipartite graphs, we found no
examples of periodicity.

5. Walks on the ‘glued trees’ graph

We now turn our attention to the special graph used by Childs ez al [1] for their algorithm with
an exponential speed up. An example of this ‘glued trees’ graph with tree depth N = 4 is shown
in figure 16 (right). At the centre, each leaf node has two edges joining it to the leaf nodes of
the other tree, so, except for the entrance and exit, exactly three edges meet at each node. The
problem is to travel via the edges from node to node as quickly as possible starting at the entrance
and finishing at the exit. The time taken to reach the exit is an example of a ‘hitting time’ (see
Kempe [28] for definitions and an earlier example of a ‘hitting time’ quantum walk problem). A
similar graph with a regular join at the leaves is also shown in figure 16 (left). This graph is easy
to traverse with a classical algorithm because it is easy to identify the middle nodes (in this case
because the middle nodes have only two edges joining them, but a regular pattern of two edges
per node is also classically tractable). The randomly glued edges joining the two halves of the
graph in figure 16 (right) disguise the join, and a classical algorithm will get lost at this point,
taking on average exponentially longer to emerge at the exit.

Childs et al use a continuous time quantum walk [16] for their algorithm. The adjacency
matrix A of a graph is an N x N matrix with entries A;; = 1, iff there is an edge joining nodes
i and j, all other entries in A are zero. For an undirected graph (edges can be traversed in either
direction, from i — j or j — i), A is symmetric. Thus it can be used to form the Hamiltonian
for the quantum walk:

N

d
I xlv@) = D Iy (Ylp(0) 1)

y
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Figure 16. Left: regularly glued binary tree graph. Right: ‘glued trees’ graph used
in the algorithm of [1]. Example shown is for N = 4, with 2N + 2 = 10 columns
and 2(2™V*D — 1) = 62 nodes. The gap between columns 4 and 5 is for clarity in
the figure and is not significant in the algorithm.

with H = yA, where y is the transition probability and x, y are nodes in the graph. The solution
may be written as

[ (0) = e " y(0)), (22)

although, of course, actually calculating it for specific instances of A and |¢(0)) is in general
a nontrivial task. The proof [1] that the quantum walk is exponentially faster than any classical
algorithm involves detailed consideration of oracles, colourings and simulation of a continuous
time quantum walk on a discrete gate-model quantum computer. We will not discuss these details
here. Figure 17 shows an example of the propagation of the continuous time walk through the
glued trees graph in terms of the column positions shown in figure 16.

A discrete time walk can also traverse this graph efficiently if a 3D Grover coin is used
[20, 29]. An example of the propagation using a Grover coin operator is shown in figure 18.
As noted by Tregenna et al [20], the fast hitting time obtained with a quantum walk is highly
sensitive to the symmetry of the problem: for quantum walks starting at a node other than the
entrance, the exit becomes exponentially harder to find and the quantum walk does no better than
a classical algorithm.

Tregenna et al also noted that that if a DFT coin operator is used instead of a Grover coin
operator on the ‘glued trees’ graph, the quantum walk stays near the starting point and does not
spread out even as far as a classical random walk. We consider how this picture changes if we
increase the branching rate of the trees that form the graph. In other words, we make a similar
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Figure 17. Propagation of the continuous time quantum walk on a glued trees
graph for a tree depth N = 10, run for 44 time steps.
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Figure 18. Propagation of the discrete quantum walk using the Grover coin
operator on a glued trees graph for a tree depth N = 10, run for 44 time steps.

graph using a pair of trinary trees (branching rate 3) and quaternary trees (branching rate 4) and
so on for arbitrary branching rate B. This is illustrated in figure 19.

5.1. Mapping to a walk on the line

Despite the random connections in the centre, the ‘glued trees’ graph with any branching rate is
still highly symmetric. Provided the initial state used at the entrance node respects the symmetry,
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Entrance

Figure 19. Details of a graph with higher branching rate at each node. The
branching rate in this example is B = 10, and the degree of each node (except
the entrance and exit nodes) includes the edge from the parent node, so that
d=B+1=11.

the whole quantum walk process can be mapped to a walk on a line corresponding to the column
positions shown in figure 16, with different biases in the probabilities for moving right or left at
each step. The mapping for the continuous time walk is given in [1] for a branching rate B = 2.
For arbitrary branching rate, this can be generalized to give a Hamiltonian for column positions
J with nonzero matrix elements

VBy 0<j<N,N < j<2N,
B (23)

mHU+D—{ i=N.
and (j+ 1|H|j) = (j|H|j+ 1). We have a choice for the hopping rate y. In order to make a fair
comparison between different branching rates B, we take y = B~'/2. This makes the nonzero
matrix elements of H unity, except at the glue, corresponding to unit hopping rate between
column positions in the mapped-to-line version of the quantum walk, for all choices of N and B.

For the discrete time quantum walk, the mapping is coin specific and works only when
the coin operator preserves the symmetry of the graph, such that the amplitude of the quantum
walk is the same on all nodes of each column. To perform the mapping for the Grover coin
operator given by equation (9), we consider one step of the evolution at a typical node in the
left-hand tree. Our notation is shown in figure 20. We assume that C; = C,--- = Cp = C and
D, = D, --- = Dg = D. Applying the Grover coin operator gives two relationships between the
incoming and the outgoing amplitudes,

2 B—-1 1-B 2B
D= P+ C and 0= P+ C
B+1 B+1 B+1 B+1

(24)

We then require B/ P = R? and B/ )" C? = L? for the incoming probabilities on the full tree
and on the line, similarly B/Q* = L? and )_, D2 = R? for the outgoing probabilities. This
gives the relationship between the amplitudes on the full tree and on the line (independent of the
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Figure 20. Typical node in the left-hand tree before and after the coin
operator is applied, showing our notation for mapping the walk to a line.
P, Q,{C}, {Di}R;, Ry, L;, Lo are amplitudes.

choice of coin operator),

P =B IR, C=BUhrL,

Q = B-?Ry,, D = B-U+h2L,. (25)

Substituting into equation (24) gives the 2 x 2 operator for a quantum walk on a line
corresponding to the Grover coin operator,

24/ B B—1

Ro = \/_RI+ I
B+1 B+1 (26)
1—-B 2+/B

Lo= R; + \/_L]
B+1 B+1

The right-hand tree is a mirror image of the left-hand tree, so for that we just exchange L and R
in the above equations. Unlike the continuous time walk, there is nothing special for the random
edges in the glue, the amplitude for traversing each edge is determined by the coin operator at
the nodes and this coin operator is different for each half of the tree.

For the entrance and exit nodes, we need to consider the most general choice in d dimensions
that respects the symmetry of the graph. As explained in [21], although the roots of the tree are
only of degree d — 1 = B, we can pad the extra coin dimension with a piece of the identity
operator so that we have d-dimensional coins throughout the walk. This has the added effect of
allowing an extra arbitrary phase; the most general form of the coin operator at the entrance and
exit nodes takes the form

ip (B)
CenD = (e gﬁ ?), (27)

where C'® is a suitably symmetric coin operator of dimension B = d — 1, with an extra arbitrary
phase ¢ and the boldface zeros fill in the row and column to make Cgnp have dimension d. We
then map Cgnp to a walk on the line, which gives a reflection with a phase shift (that may be
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chosen independently at the entrance and the exit),
Ro = ¢ L, Entrance, Lo =¢”R, Exit. (28)

This mapped-to-the-line operator already tells us how the Grover coin operator will behave
in the limit of a large branching rate. Equation (26) becomes —io, as B — o0, for which the
walk on a line simply oscillates between the initial and neighbouring nodes, making no further
progress along the line. Thus we expect the probability of reaching the exit to fall towards zero
as B — oo.

We can relate the entanglement between the coin and the position on the line to the
entanglement between the coin and the position in the walk on the full graph. To calculate
the entanglement, we calculate the entropy of the reduced density matrix for the coin (by tracing
over the position) and then obtain the eigenvalues of this density matrix, from which the entropy
is calculated according to equation (6). For a 2D matrix, the eigenvalues are the solution of a
quadratic equation; and for a d-dimensional coin, the eigenvalues are the solution of a polynomial
of order d. By calculating the reduced density matrices for the full walk and the mapped-to-line
versions, and comparing the polynomials we find, for example, for the Grover coin case, that the
polynomials are related by

fioL (0 = (="' [x* — (ap + Bdp)x + Blagdp — c3)] = (—x)* 7' fi R (), (29)

where ag, cp and dp are time-dependent coefficients. The roots of this polynomial give
the eigenvalues and thence the entropy of the reduced density matrix, which measures the
entanglement. Thus we see that the entanglement is the same between the coin and position
in the mapped-to-line walk as in the corresponding full walk. We studied the entanglement for
the walk on the glued trees graph, but it did not provide useful indications of the progress of the
walk, so we do not present any of these results here.

5.2. Variation with tree depth N

We first restrict our attention to the original problem with branching rate B = 2, and consider
what happens when the tree depth N is varied. The quantum walker does not arrive at the exit
with certainty after a short number of time steps. However, the probability of finding it at the
exit node shows a clear peak after roughly the number of steps it takes to walk deterministically
from entrance to exit by the shortest route. If this peak is large enough (polynomial in N and B),
one can simply repeat the quantum walk a polynomial number of times to increase the success
probability to near certainty (probability amplification).

We studied both continuous time and discrete time quantum walks using simulations with
the dynamics mapped onto a walk on the line. For the continuous time walk, the results
are straightforward, given by the black line in figure 21. This is well fit for large N by
P(EXIT) ~ N—2/3, as predicted by Childs et al [1], who derive the scaling of the Green’s function
to be ~ N~!/3 at the peak.

For the discrete time walk, as noted in the previous section, we have a choice about what to
do at the entrance and exit where the nodes are of degree 2 rather than 3. We tested two examples
of choices of phase shifts (equation (27)) using the same phase at both entrance and exit. The
2D version of the Grover coin operator is o,, which produces no phase shift when mapped onto
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Figure 21. Variation of exit probability with tree depth on the ‘glued trees’ graph
with branching rate B = 2 for the continuous time quantum walk (black) and the
discrete quantum walk with a Grover coin using two different reflection phases
as detailed in the key (red and blue).

the line. Another possible symmetric 2D coin operator is

© 1 (1
C; _ﬁ<i 1). (30)

Mapped onto the line, this produces a phase shift of (1 +1i)/+/2 = e"*. The different phases
give different results due to the different interference effects. Results for both are also shown in
figure 21. They produce a slightly higher exit probability than the continuous time walk for most
values of N, but follow the same scaling of P(EXIT) ~ N ~%/* (numerical data up to N = 10 000,
not shown in figure 21, was used for the fitting). This corresponds to the analytic solution for a
simple walk on a line found by Ambainis ez al [15], which gives the scaling of the peak amplitude
as ~ N~!3. The mapped-to-the line quantum walk is not exactly the same as the simple walk
on an infinite line, but the scaling of the peak should be similar, up to the first reflection at
the exit. This scaling, being polynomial in N, does not affect the exponential speed up of the
algorithm. We can apply probability amplification efficiently in polynomial time and still beat
the exponentially slow classical algorithm. However, the difference between the two different
choices of 2D coin operators is instructive, suggesting that in other algorithms an appropriate
choice might significantly improve the success probability.

5.3. Variation with branching rate

We now consider how the exit probability varies if the branching rate of the two trees forming the
graph is varied. For the continuous time walk, Childs et al [1] provide most of the calculations,
they give the transmission amplitude through a ‘defect’ (i.e. the glue) of

2i«/§ sin k

(B—1)cosk + (B+1)sink’

T(x) = (31)
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Figure 22. Variation of the first peak in the exit probability for branching rates
up to B = 50 and tree depths up to N = 50 using a Grover coin operator.

(in our notation) where 0 < x < 7 is the momentum of the quantum walker. This has a broad
peak at k = 7r/2, where the transmission probability |7 (7/2)|> = 4B/(B + 1)2. Thus for large
B, we expect the success probability to scale as 1/B, and we observed this numerically.

For the discrete time walk, the results are shown in figure 22. The peak exit probability
closely follows that of the continuous time walk scaling as 1/B. Thus both continuous time
and discrete Grover coined walks still beat a classical algorithm, which takes time proportional
to the number of nodes, i.e. T ~ BY, to find the exit with better than exponentially small exit
probability. Combining the scalings for depth and branching rate, we have these two versions of
quantum walks finding the exit in time linear in N with probability proportional to 1/BN?/>.

5.4. DFT coin operator on glued trees

We now consider the quantum walk with a DFT coin operator on the glued trees graph. The
DFT coin operator does not have the right symmetry to map to a walk on the line for randomly
applied coin labels, but if we apply a regular coin labelling that singles out the ‘root’ direction to
have coin label zero, the mapping to the line can be carried out successfully. This is ‘cheating’
as far as application to traversing the graph is concerned, since such a labelling would enable a
classical algorithm to deterministically find the exit. Nonetheless, the branching trees that make
up this graph appear widely in physics and computer science, so other applications that could use
this regular labelling may arise. Note that the coin labelling in [20] was consistent, in that each
end of each edge had the same label, but therefore could not always label the root direction as
zero, and in fact made random label choices once the consistency condition was satisfied. Hence
they did not find any advantage of using DFT coin over classical. With the regular labelling,
the mapping works because the phase factors all neatly cancel out, as we now show. We start
by assuming C; = C, - -- = Cp = C, and show that after applying the DFT coin operator as in
equation (13) ford = B+ 1, we have Dy = D, --- = Dy = D. Thus if we start in a symmetric
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state, this will be preserved under the DFT coin operator. Using the notation in figure 20,

1
= P + B(C],
0 = P+ Bl

1
D, = — 1[P+(a)+a)2+---+a)B)C],
1
D, = m[P+ (@ +o*+- - +0*)C], (32)
1 B 2B B?
Dy = B+1[P+(a) +07+ -+ )(C],
where @ = e?™/? is the complex dth root of unity. Each of the sums of powers of  in the

expressions for D; to Dg evaluates to —1, hence we have D; = D, --- = Dg = D as claimed.
Substituting for P, Q, C and D from equation (25) then gives

R B —R 1
°= I «/B+1

B+1

1 B
+y 5L
B 1 B+1

for the 2 x 2 operator equivalent to the DFT coin operator. For B — oo, equation (33) becomes
the identity, which corresponds to a walk that steps deterministically along the line, reaching the
exit in the shortest possible time. For intermediate values of B, the DFT coined walk partly steps
across the graph and partly remains close to the entrance: an example is shown in figure 23 for
a ‘glued trees’ graph with branching rate B = 10 and depth N = 10.

Again we look at the first peak in the exit probability, which occurs after time ~(2N + 2).
The variation of this first peak in the probability with branching rate and tree depth for N, B < 50
is plotted in figure 24. For B = N, there is a wide peak; on the B > N side, an initial peak rises
towards unity, while on the B < N side, the probability tails off in a series of smaller arches. For
B = 2, the quantum walk with this coin operator has a noticeably lower probability of finding the
exit after linear time than the Grover coin or the continuous time quantum walks. Nevertheless,
there is still a peak in the probability of finding the walker at the exit, and our numerical results
show that this peak scales as N —2/3_ the same as the Grover coined walk and the continuous time
walk, but with a constant prefactor ~30 times smaller.

We can understand this prefactor qualitatively as follows. The mapped-to-the-line version of
the coined quantum walk is essentially a generalized Hadamard coin walk on finite line segments
[24]. Such walks on the infinite line all have the typical double-peaked shape, with the ratio of the
left- and right-peak heights determined by the coin biases and the initial state. The mapped-to-
the-line versions of the Grover and regular DFT coins have the minus sign in opposite positions
in the off-diagonal, equations (26) and (33). Combined with the rightward moving initial state,
for the first half of the walk the largest peak is thus on the leading (trailing) edge for the Grover
(DFT) coin operator. Moreover, the trailing edge DFT peak is larger than the leading edge Grover

(33)
Lo=
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Figure 23. Propagation of the discrete quantum walk using the DFT coin operator

on a glued trees graph for tree depth N = 10 and branching rate B = 10, run for
44 time steps.

S—

1 I |

0.8 g ,
8 i

1

£ 06l ) :
q . / 77 v,
fi 0.4 vﬁ
0.2

0 0

50
branching rate B tree depth N

Figure 24. Variation of the first peak in the exit probability for branching rates
up to B = 50, and tree depths up to N = 50 using a DFT coin operator.

peak. For the second half of the walk, the coin operators are transposed and the trailing (leading)
edge is largest for the Grover (DFT) coin operator, but this is combined with different initial
states as the quantum walk crosses the glue from the first half of the walk, so the two effects do

not just cancel out. The cross-over point beyond which the regular DFT coin performs best is
roughly B > 10 for any tree depth.
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6. Summary and discussion

Even for the simple case of a coined quantum walk on the line, we find that the entanglement
between the coin and the particle position shows a surprisingly rich behaviour. The entanglement
oscillates around an asymptotic value that is determined by the bias in the coin operator, and the
rate of convergence depends on the symmetry in the distribution of the quantum walk, which in
turn is determined by the initial state of the coin (assuming the quantum walk starts at the origin).
More symmetric distributions (about the origin) converge faster than asymmetric distributions,
in which there is a bias favouring the finding of the particle in the positive or the negative half
line.

For lattices in two spatial dimensions, similar rich patterns of behaviour are observed: the
rate of convergence of the entanglement correlates with the extent to which the quantum walk
spreads out over the grid, with fast convergence indicating good spreading behaviour, and slow
convergence for distributions that bunch around one point, such as the origin. We find that for
lattices in two spatial dimensions but of higher degree d > 4, a DFT coin operator is better at
spreading over the graph than a Grover coin operator. This can be explained by the bias in the
Grover coin operator: above the degree d = 4, the Grover coin operator favours returning along
the path it arrived from rather than picking a new direction, thus tending to keep the walk near
where it started. The DFT coin operator is unbiased for any degree, so the spreading depends
only on the relative phases, which can be controlled by the coin labelling.

For finite graphs, there are a few periodic examples, corresponding to those reported in
[20], otherwise the entanglement is random even for very simple cases, like the seven-cycle. A
quantum walk on a complete bipartite graph using a Grover coin operator is always periodic
with period four, and we have shown this analytically. For the DFT coin, the quantum walk on
complete bipartite graphs was not periodic for any of the cases we tested numerically.

For the glued trees graph and its generalization to higher branching rates, the first peak
in the probability for finding the quantum walker at the exit node occurs in linear time and
scales with tree depth as N~%/3 for both Grover and DFT coin operators, matching that found
for the continuous time walk by Childs et a/ [1]. This is in contrast with classical algorithms,
which require exponential time to find the exit with better than exponentially small probability.
However, for increased branching rate, while the continuous time walk and the Grover coined
discrete time walk both scale as B!, a DFT coin with regular coin labels has a success probability
approaching unity for B > N >> 1, and beats the continuous time and Grover coined walks for
B 2 10. A regular coin labelling is not permitted in the algorithmic context of [1], but branching
trees occur in many other contexts, some of which may permit a regular coin labelling such that
this DFT coin property could prove useful.

Another observation from this work is that since the coin needs to have as many dimensions
as the maximum degree of the graph, it allows a relative phase to be introduced at vertices of
less than the maximum degree, for example, at the entrance and exit of the ‘glued trees’ graph
(see figure 21). The quantum walk may exhibit different properties depending on the choice of
relative phase, which provides extra options for tuning the quantum walk.

Overall, the discrete quantum walk offers many options for tuning the properties of the
quantum coin operator to fit the problem to be solved. These possibilities are not available in
the continuous time quantum walk, unless one adds extra degrees of freedom [18] (whereupon
it becomes exactly equivalent). Further work could investigate how to optimize the uniformity
of spreading over these higher-dimensional lattices, for example, by applying small amounts of
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decoherence (see [20]) and by adjusting the coin operator: we do not know whether the DFT
coin operator is the optimal choice for a general d-dimensional graph for d > 4.
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